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Abstract The problem of statistical recognition is considered, as it arises in immunobiol-
ogy, namely, the discrimination of foreign antigens against a background of the body’s own
molecules. The precise mechanism of this foreign-self-distinction, though one of the ma-
jor tasks of the immune system, continues to be a fundamental puzzle. Recent progress has
been made by van den Berg, Rand, and Burroughs (J. Theor. Biol. 209:465–486, 2001), who
modelled the probabilistic nature of the interaction between the relevant cell types, namely,
T-cells and antigen-presenting cells (APCs). Here, the stochasticity is due to the random
sample of antigens present on the surface of every APC, and to the random receptor type
that characterises individual T-cells. It has been shown previously (van den Berg et al. in
J. Theor. Biol. 209:465–486, 2001; Zint et al. in J. Math. Biol. 57:841–861, 2008) that this
model, though highly idealised, is capable of reproducing important aspects of the recog-
nition phenomenon, and of explaining them on the basis of stochastic rare events. These
results were obtained with the help of a refined large deviation theorem and were thus as-
ymptotic in nature. Simulations have, so far, been restricted to the straightforward simple
sampling approach, which does not allow for sample sizes large enough to address more de-
tailed questions. Building on the available large deviation results, we develop an importance
sampling technique that allows for a convenient exploration of the relevant tail events by
means of simulation. With its help, we investigate the mechanism of statistical recognition
in some depth. In particular, we illustrate how a foreign antigen can stand out against the
self background if it is present in sufficiently many copies, although no a priori difference
between self and nonself is built into the model.
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1 Introduction

The notion of statistical recognition between randomly encountered molecules is central to
many biological phenomena. This is particularly evident in biological repertoires, which
contain enough molecular diversity to bind practically any randomly encountered target
molecule. The receptor repertoire of the immune system provides the best-known exam-
ple of a system displaying probability-based interactions; another one is the olfactory re-
ceptor repertoire, which recognises multitudes of odorants. This chance recognition is a
well-established phenomenon and has been analysed with the help of various statistical and
biophysical models; compare [16, 22]. Here we will tackle a model of statistical recogni-
tion between cell surfaces (in the sense of collections of numerous surface molecules, rather
than single ones) of the immune system. It describes a vital property of our immune system,
which comes into play when a virus invades the body and starts to multiply. Fortunately,
however, sooner or later it is recognised as a foreign intruder by certain white blood cells,
which are part of the immune system and start a specific immune response that finally elim-
inates the virus population.

This ability of the immune system to discriminate safely between foreign and self mole-
cules is a fundamental ingredient to everyday survival of jawed vertebrates; but how this
works exactly is still enigmatic. Indeed, the immune system faces an enormous challenge
because it must recognise one (or a few) type(s) of (potentially dangerous) foreign molecules
against an enormous variety of (harmless) self molecules. The particular difficulty lies in the
fact that there can be no a priori difference between self and nonself (like some fundamental
difference in molecular structure), since this would open up the possibility for molecular
mimicry on the part of the pathogen, which could quickly evolve immuno-invisibility by
imitating the self structure. The problem may be phrased as statistical recognition of one
particular foreign signal against a large, fluctuating self background. However, immune bi-
ology has been largely treated deterministically until, recently, an explicit stochastic model
was introduced by van den Berg, Rand and Burroughs [34] (henceforth referred to as BRB)
and further developed by Zint, Baake and den Hollander [36]. It describes (random) en-
counters between the two crucial types of white blood cells involved (see Figs. 1 and 2):
the antigen-presenting cells (APCs), which display a mixture of self and foreign antigens at
their surface (a sample of the molecules around in the body), and the T-cells, which “scan”
the APCs by means of certain receptors and ultimately decide whether or not to react, i.e.,
to start an immune response.

To be biologically more precise, we consider the encounters of so-called naive T-cells
with professional APCs in the secondary lymphoid tissue. A naive T-cell is a cell that has
finished its maturation process in the thymus and has been released into the body, where
it has not yet been exposed to antigen. It tends to dwell in secondary lymphoid tissue like
lymph nodes, where it comes into contact with professional APCs, special white blood cells
with so-called MHC molecules at their surface that serve as carriers for antigens. Each T-cell
is characterised by a specific type of T-cell receptor (TCR), which is displayed in many
identical copies on the surface of the particular T-cell. A large number (estimated at 107

in [1]) of different receptors, and hence different T-cell types, are present in an individual
(every type, in turn, is present in several copies, which form a T-cell clone). However, the
number of potential antigen types is still vastly larger (roughly 1013; see [19]). Thus, specific
recognition (where one TCR recognises exactly one antigen) is impossible; this is known as
Mason’s paradox. The task is further complicated by the fact that every APC displays on the
order of thousand(s) of different self antigen types, in various copy numbers [13, 19, 27],
together with, possibly, one (or a small number of) foreign types; the T-cells therefore face
a literal “needle in a haystack” problem.
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Fig. 1 A T-cell and an antigen-presenting cell (based on Fig. 1 of [33]). An APC absorbs molecules and par-
ticles from its vicinity and breaks them down. The emerging fragments, so-called peptides (short sequences
of amino acids), serve as antigens. They are bound to so-called MHC molecules (still within the cell), and
the resulting complexes, each composed of an MHC molecule and a peptide, are presented on the surface of
the cell (the MHC molecules serve as carriers or anchors to the cell surface). Since most of the molecules
in the vicinity of an APC are self molecules, every APC displays a large variety of different types of self
antigens and, possibly, one (or a small number of) foreign types. The various antigen types occur in various
copy numbers. Each T-cell is characterised by a specific type of T-cell receptor (TCR), which is displayed
in many identical copies on the surface of the particular T-cell. When a T-cell meets an APC, the contact
between them is established by a temporary bond between the cells, in which the TCRs and the MHC-peptide
complexes interact with each other, which results in stimuli to the T-cell body. If the added stimulation rate
is above a given threshold, the T-cell is activated to reproduce, and the resulting clones of T-cells will initiate
an immune reaction against the intruder

Fig. 2 Caricature of T-cells and
APCs (from [36]). Note that
every T-cell has many copies of
one particular receptor type, but
different T-cells have different
receptor types. In contrast, every
APC carries a mixture of antigen
types, which may appear in
various copy numbers

For an encounter between a pair of T-cell and APC, both chosen randomly from the
diverse pool of T-cells and APCs, the probability to react must be very small (otherwise, im-
mune reactions would occur permanently); this is a central theme in the analysis. It entails
that some questions may be answered analytically with the help of large deviation theory;
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others require simulation, but the use of this has been limited due to the small probabilities
involved, at least with the straightforward simulation methods applied so far [34, 36]. The
main purpose of this article is to devise an efficient importance sampling method based on
large deviation theory and tailored to the problem at hand, and to use this to investigate
the mechanism of statistical recognition in more detail. The paper is organised as follows.
In Sect. 2, we present the most important biological facts and recapitulate the model; this
will be a self-contained, but highly simplified outline, since the full picture is available else-
where [34, 36]. In Sect. 3, we summarise (mainly from [9] and [5]) some general theory that
allows to design efficient methods of rare event simulation on the basis of a large deviation
analysis, and tailor these to the problem at hand in Sect. 4. Section 5 presents the simula-
tion results and analyses them both from the computational and the biological point of view.
Simulation speeds up by a factor of nearly 1500 relative to the straightforward approaches
used so far. This enables us to explore regions of parameter space as yet inaccessible, to val-
idate previous asymptotic results, and to investigate the mechanism of statistical recognition
in more depth than previously possible.

2 The T-cell Model

In this section, we briefly motivate and introduce the model of T-cell recognition as first pro-
posed by BRB in 2001 [34] and further developed by Zint, Baake and den Hollander [36].
More precisely, we only consider the toy version of this model, which neglects the modi-
fication of the T-cell repertoire during maturation in the thymus. This toy version already
captures important aspects of the phenomenon while being particularly transparent. We will
come back to maturation (already included in [34]) in the discussion.

When T-cells and APCs meet, the T-cell receptors bind to the various antigens presented
by the APC [6]. For every single receptor-antigen pair, there is an association-dissociation
reaction, the rate constants for which depend on the match of the molecular structures of
receptor and antigen. Assuming that association is much faster than dissociation and that
there is an abundance of receptors (so that the antigens are mostly in the bound state), one
can describe the reaction in terms of the dissociation rates only.

Every time a receptor unbinds from an antigen, it sends a signal to the T-cell, provided
the association has lasted for at least one time unit (i.e., we rescale time so that the unit of
time is this minimal association time required). The duration of a binding of a given receptor-
antigen pair follows the Exp(1/τ) distribution, i.e. the exponential distribution with mean τ ,
where τ is the inverse dissociation rate of the pair in question. The rate of stimuli induced
by the interaction of our antigen with the receptors in its vicinity is then given by

w(τ) = 1

τ
exp

(
− 1

τ

)
, (1)

i.e., the dissociation rate times the probability that the association has lasted long enough.
(If the simplifying assumption of unlimited receptor abundance is dispensed with, (1) must
be modified, see [32].) As shown in Fig. 3, the function w first increases and then decreases
with τ with a maximum at τ = 1, which reflects the fact that, for τ < 1, the bindings tend
not to last long enough, whereas for τ > 1, they tend to last so long that only few stimuli are
expected per time unit.

The T-cell sums up the signals induced by the different antigens on the APC, and if the
total stimulation rate reaches a certain threshold value, the cell initiates an immune response.
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Fig. 3 Left: the function w. Right: the densities of W = w(T ) and Wϑ with tilting parameter ϑ = 46 (cf.
Sect. 3.2). The densities have poles at w(0) = 0 and w(1) = 0.3679 (due to the vanishing derivative of w

at τ = 0 and τ = 1), but the right poles are invisible because they support very little probability mass. In
fact, for ε = 0.01, one has P(0 ≤ W ≤ ε) = 0.98 and P(w(1) − ε ≤ W ≤ w(1)) = 2.17 × 10−9, whereas
P(0 ≤ Wϑ ≤ ε) = 0.137138 and P(w(1) − ε ≤ Wϑ ≤ w(1)) = 0.0050

This model relies on several hypotheses, which are known as kinetic proofreading [12, 17,
20, 21], serial triggering [4, 10, 26, 28–30], counting of stimulated TCRs [24, 35], and the
optimal dwell-time hypothesis [11, 14].

Due to the huge amount of different receptor and antigen types, it is impossible (and un-
necessary) to prescribe the binding durations for all pairs of receptor and antigen types in-
dividually. Therefore, BRB chose a probabilistic approach to describe the meeting of APCs
and T-cells. A randomly chosen T-cell (that is, a randomly chosen type of receptor) encoun-
ters a randomly chosen APC (that is, a random mixture of antigens). The mean binding time
that governs the binding of this random receptor to the j th type of antigen is taken to be a
random variable denoted by Tj . The Tj are independent and identically distributed (i.i.d.)
and are assumed to follow the Exp(1/τ̄ ) distribution, i.e., the exponential distribution with
mean τ̄ , where τ̄ is a free parameter. Note that there are two exponential distributions (and
two levels of averaging) involved here. First, the duration of an individual binding between
a type-j antigen and a random receptor is Exp(1/Tj ) distributed (see the discussion of (1)).
Second, Tj , the mean duration of such a binding (where the receptor is chosen once and the
times are averaged over repeated bindings with a j antigen) is itself an exponential random
variable, with realisation τj . Finally, its mean, E(Tj ) = τ̄ , is the mean binding time of a
j -antigen (and, due to the i.i.d. assumption, of any antigen) when averaged over all encoun-
ters with the various receptor types. The exponential distribution of the individual binding
time is an immediate consequence of the (first-order) unbinding kinetics. In contrast, the
corresponding assumption for the Tj is made for simplicity; the approach is compatible
with various other distributions as well, see [34] and [36]. The i.i.d. assumption, however,
is crucial, since it implies, in particular, that there is no difference between self and foreign
antigens here; i.e., no a priori distinction is built into the model.

The total stimulation a T-cell receives is the sum over all stimulus rates Wj = w(Tj ) that
emerge from antigens of the j ’th type. It is further assumed that there is at most one type
of foreign antigen in z(f ) copies on an APC, whose signal must be discriminated against
the signals of a huge amount of self antigens. (There could, in principle, be multiple foreign
peptide types, but there are good reasons to assume that there are mechanisms to ensure that
a given T-cell sees at most one foreign peptide type, see [32]). The self antigens are here
divided into two distinct classes, c and v, that are present in different copy numbers z(c)

and z(v). An APC displays m(c) and m(v) different types of class c and v. The indices c and
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v stand for constitutive and for variable, respectively; but for the purpose of this article,
only the abundances are relevant, in particular, z(c) > z(v) and m(c) < m(v). Over the whole
APC the total number of antigens is then m(c)z(c) + m(v)z(v) =: M if no foreign antigen is
present. If z(f ) foreign molecules are also present, the self molecules are assumed to be
proportionally displaced (via the factor q := (M − z(f ))/M), so that the total number of
antigens remains unchanged at

z(f ) + m(c)qz(c) + m(v)qz(v) = M. (2)

The total stimulation rate in a random encounter of T-cell and APC can then be described
as a function of z(f ):

G(z(f )) :=
⎛
⎝m(c)∑

j=1

qz(c)Wj

⎞
⎠ +

⎛
⎝m(c)+m(v)∑

j=m(c)+1

qz(v)Wj

⎞
⎠ + z(f )Wm(c)+m(v)+1, (3)

i.e., a weighted sum of i.i.d. random variables. Alternatively, we consider the extension of
the model proposed by Zint et al. [36], which, instead of the deterministic copy numbers
z(c), z(v), uses random variables Z

(c)
j ,Z

(v)
j distributed according to binomial distributions

with E(Z
(c)
j ) = z(c),E(Z

(v)
j ) = z(v), where E denotes expectation (so the expected number

of antigens per APC is still M). The model then reads

G(z(f )) :=
⎛
⎝m(c)∑

j=1

qZ
(c)
j Wj

⎞
⎠ +

⎛
⎝m(c)+m(v)∑

j=m(c)+1

qZ
(v)
j Wj

⎞
⎠ + z(f )Wm(c)+m(v)+1. (4)

In line with [34, 36], we numerically specify the model parameters as follows: τ̄ = 0.04;
m(c) = 50, m(v) = 1500, z(c) = 500, z(v) = 50 (and hence M = 105). The distributions in the
extended model are the binomials Bin(ζ (c), p) and Bin(ζ (v),p) for Z

(c)
j and Z

(v)
j respec-

tively, where ζ (c) = 1000, ζ (v) = 100, and p = 0.5.
The relevant quantity for us is now the probability

P
(
G(z(f )) ≥ gact

)
(5)

that the stimulation rate reaches or surpasses a threshold gact. To achieve a good foreign-self
discrimination, there must be a large difference in probability between the stimulation rate in
the case with self antigens only (z(f ) = 0), and the stimulation rate with the foreign antigen
present, i.e.,

1 � P
(
G(z(f )) ≥ gact

) � P
(
G(0) ≥ gact

) ≥ 0 (6)

for realistic values of z(f ). Note that both events must be rare events—otherwise, the immune
system would “fire” all the time. Thus gact must be much larger than E(G(z(f ))) (which, due
to (2) and the identical distribution of the Wj , is independent of z(f )). Evaluating these small
probabilities is a challenge. So far, two routes have been used: analytic (asymptotic) theory
based on large deviations (LD) and straightforward simulation (so-called simple sampling).
Both have their shortcomings: the LD approach is only exact in the limit of infinitely many
antigen types (and the available error estimates are usually too crude to be useful); the sim-
ulation strategy, on the other hand, is so time-consuming that it becomes simply impossible
to obtain sample sizes large enough for a detailed analysis, in particular for large values
of gact. Therefore, an importance sampling approach is required. Let us now recapitulate
some underlying theory.
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3 Rare Event Simulation: General Theory

The general problem we now consider is to estimate the probability P (A) of a (rare) event A

under a probability measure P . The straightforward approach, known as simple sampling,
uses the estimate

(P̂ (A))N := 1

N

N∑
i=1

1{S(i) ∈ A} = 1

N
card{1 ≤ i ≤ N | S(i) ∈ A}, (7)

where the {S(i)}1≤i≤N are independent and identically distributed (i.i.d.) random variables
with distribution P , 1{.} denotes the indicator function, and N is the sample size; we will
throughout use v̂ for an estimate of a quantity v. (P̂ (A))N is obviously an unbiased and
consistent estimate, but, for small P (A), the convergence to P (A) is slow, and large samples
are required to get reliable estimates.

Various simulation methods are available that deal with this problem and yield a better
rate of convergence (see the monograph by Bucklew [5] for an overview). Most of them
achieve this improvement by reducing the variance of the estimator. We will concentrate
here on the most wide-spread class of methods, namely importance sampling. As is well
known, one introduces a new sampling distribution Q here under which A is more likely
to happen, produces samples from this distribution and returns to the original distribution
by reweighting. In general, finding a good importance sampling distribution that reduces
the variance as much as possible is an art, and much of the literature revolves around this.
Some general purpose and many ad hoc strategies exist, but usually, importance sampling
distributions are best tailored by exploiting the structure of the specific problem at hand.
However, if the problem can be embedded into a sequence of problems for which a so-
called large deviation principle is valid, a unified theory is available that identifies the most
efficient simulation distribution. This technique of “large deviation simulation” was intro-
duced by Sadowsky and Bucklew [25], laid down in the monograph by Bucklew [5], and
further developed by Dieker and Mandjes [9]. It rests on the well-established theory of large
deviations, as summarised, for example, in the books by Dembo and Zeitouni [7] or den
Hollander [8]. Let us recapitulate the basic background.

3.1 Large Deviation Probabilities

Consider a sequence {Sn} of random variables on the probability space (Rd , B,P), where
B is the Borel σ -algebra of R

d . Let {Pn} be the family of probability measures induced
by {Sn}, i.e., Pn(B) = P(Sn ∈ B) for B ∈ B. We assume throughout that {Sn} satisfies a
large deviation principle (LDP) according to the following definition [7, 9]:

Definition 1 (Large deviation principle) A family of probability measures {Pn} on (Rd , B)

satisfies the large deviation principle (LDP) with rate function I if I : R
d → [0,∞] is lower

semicontinuous and, for all B ∈ B,

− inf
x∈B◦ I (x) ≤ lim inf

n→∞
1

n
logPn(B) ≤ lim sup

n→∞
1

n
logPn(B) ≤ − inf

x∈B

I (x), (8)

where B◦ := int(B) and B := clos(B) denote the interior and the closure of B , respectively.
I is said to be a good rate function if it has compact level sets in that I−1([0, c]) = {x ∈ R

d :
I (x) ≤ c} is compact for all c ∈ R

d .
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A set B is called an I -continuity set if

inf
x∈B◦ I (x) = inf

x∈B
I (x) = inf

x∈B

I (x). (9)

If B is such a set, the LDP means that Pn(B) decays exponentially for large n, with decay
coefficient infx∈B I (x). A point b is called a minimum rate point of B if infx∈B I (x) = I (b).

Large deviation principles are well known for many families of random variables, like
empirical means of i.i.d. random variables or empirical measures of Markov chains. For the
application we have in mind, which involves sums of independent, but not identically distrib-
uted random variables, we need the fairly general setting of the Gärtner-Ellis theorem, which
we recapitulate here (cf. [7, Theorem 2.3.6] and [8, Chap. V]). Let ϕn(ϑ) := EPn(e

〈ϑ,Sn〉),
ϑ ∈ R

d , be the moment-generating function of Sn, where 〈., .〉 denotes the scalar product
and Eμ(.) denotes the expectation of a random variable with respect to the probability mea-
sure μ.

Theorem 1 (Gärtner-Ellis) Assume that

(G1) limn→∞ 1
n

logϕn(nϑ) =: �(ϑ) ∈ [−∞,∞] exists,
(G2) 0 ∈ int(D�), where D� := {ϑ ∈ R

d : �(ϑ) < ∞} is the effective domain of �,
(G3) � is lower semi-continuous on R

d ,
(G4) � is differentiable on int(D�),
(G5) Either D� = R

d or � is steep at its boundary ∂D�, i.e., limint(D�)�ϑ→∂D�
|∇�(ϑ)|

= ∞.

Then, {Pn} satisfies the LDP on R
d with good rate function I , where I is the Legendre

transform of �, i.e.,

I (x) = sup
ϑ∈Rd

[〈x,ϑ〉 − �(ϑ)], x ∈ R
d . (10)

The function � in (G1) is convex. If there is a solution ϑ∗ of

∇�(ϑ) = x, (11)

one has

I (x) = 〈ϑ∗, x〉 − �(ϑ∗). (12)

If � is strictly convex in all directions, ϑ∗ is unique. See Fig. 4 for a one-dimensional
example (the T-cell application, in fact).

3.2 Simulating Rare Event Probabilities

Let now A ∈ B be a rare event in the sense that 0 < infx∈A I (x) < ∞. Here, the first in-
equality implies that A becomes exponentially unlikely as n → ∞, whereas the second
inequality serves to exclude nongeneric cases (in particular cases where the event is impos-
sible). An important notion for the rare event simulation of Pn(A) is that of a dominating
point [5, p. 83]: A point a is a dominating point of the set A if it is the unique point such
that

(a) a ∈ ∂A,
(b) ∃ a unique solution ϑ∗ of ∇�(ϑ) = a, and
(c) A ⊂ {x ∈ R

d : 〈ϑ∗, x − a〉 ≥ 0}.
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A dominating point, if it exists, is always a unique minimum rate point (see [5, p. 83]).
Convexity of A implies existence of a dominating point (cf. [9]).

Following [9] we now turn to the problem of simulating Pn(A) = EPn(1{Sn ∈ A}).
The naive simple-sampling estimate obtained from N i.i.d. copies S(i)

n (1 ≤ i ≤ N ), drawn
from Pn, is, as in (7), given by

(
P̂n(A)

)
N

:= 1

N

N∑
i=1

1{S(i)
n ∈ A}. (13)

It is unbiased and converges (almost surely) to Pn(A) in the limit N → ∞, but it is ineffi-
cient since it requires that N increase exponentially with n to yield a meaningful estimate.
Instead of {Sn}, one therefore considers an alternative family of random variables, {Tn} with
distribution family {Qn}, again on (Rd , B), under which A occurs more frequently. Assum-
ing that Pn and Qn are absolutely continuous with respect to each other, one can use the
identity

Pn(A) = EPn(1{Sn ∈ A}) = EQn

(
1{Tn ∈ A} dPn

dQn

(Tn)

)
, (14)

where dPn/dQn is the Radon-Nikodym derivative of Pn with respect to Qn. The resulting
importance sampling estimate then relies on i.i.d. samples T (i)

n from {Qn} and reads

(
P̂Qn(A)

)
N

:= 1

N

N∑
i=1

1{T (i)
n ∈ A} dPn

dQn

(T (i)
n ), (15)

where (dPn/dQn)(.) acts as a reweighting factor from the sampling distribution to the origi-
nal one. It is reasonable to assume that (dPn/dQn) is continuous to avoid the usual problems
with L1-functions; this is no restriction for our intended application.

An adequate optimality concept in this context is that of asymptotic efficiency. According
to [9], it is based on the relative error ηN(Qn,A) defined via its square

η2
N(Qn,A) := VQn(P̂Qn(A))N

(Pn(A))2
(16)

(where Vμ(.) denotes the variance of a random variable with respect to the probability mea-
sure μ). The relative error is proportional to the width of the confidence interval relative to
the (expected) estimate itself. Asymptotic efficiency is then defined as follows.

Definition 2 (Asymptotic efficiency) An importance sampling family {Qn} is called asymp-
totically efficient for the rare event A if

lim
n→∞

1

n
logN∗

Qn
= 0, (17)

where N∗
Qn

:= inf{N ∈ N : ηN(Qn,A) ≤ ηmax} for some given maximal relative error ηmax,
0 < ηmax < ∞.

In words, asymptotic efficiency means that the number of samples required to keep the
relative error below a prescribed bound ηmax increases only subexponentially (rather than
exponentially as with simple sampling). The concrete choice of ηmax is actually irrelevant,
see Lemma 1 in [9].



546 F. Lipsmeier, E. Baake

An obvious idea from large deviation theory would be to use, as sampling distributions,
the family of measures {P ϑ

n } that are exponentially tilted with parameter ϑ , that is,

dP ϑ
n

dPn

(x) = en〈ϑ,x〉

ϕn(nϑ)
, x ∈ R

d; (18)

P ϑ
n then takes the role of Qn. The task remains to find a suitable ϑ , i.e., a tilting parameter

that makes {P ϑ
n } asymptotically efficient. Necessary and sufficient conditions for this are

given in [9, Assumption 1 and Corollary 1] and are summarised below, in a form adapted to
the present context.

Theorem 2 (Dieker-Mandjes 2005) Assume that, for some given ϑ∗,

(V1) {Pn} satisfies an LDP with good rate function I ,
(V2) lim supn→∞

1
n

logϕn(γ nϑ∗) < ∞ for some γ > 1, and, likewise, with ϑ∗ replaced by
−ϑ∗,

(V3) The rare event A is both an I -continuity set and an (I + 〈ϑ∗, .〉)-continuity set.

Then, the tilted measure {P ϑ∗
n } is asymptotically efficient for simulating A if and only if

inf
x∈Rd

[I (x) − 〈ϑ∗, x〉] + inf
x∈A

[I (x) + 〈ϑ∗, x〉] = 2 inf
x∈A◦ I (x). (19)

We use assumption (V2) here to replace the weaker but less easy to verify condition (2)
in Assumption 1 of [9], in line with the paragraph below (2) in [9], or [7, Theorem 4.3.1].
Note also that (V2) holds automatically if ϕn(nϑ) exists for all ϑ—but this is not mandatory
here, since only a given ϑ∗ is considered.

The proof of Theorem 2 is given in [9] and need not be recapitulated here; but we would
like to comment briefly on what happens in the central condition (19). Replacing Qn by P ϑ∗

n

in (16) and (15), we can rewrite η2
N as

η2
N(P ϑ∗

n ,A) = V
Pϑ∗

n
( ̂P

Pϑ∗
n

(A))N

(Pn(A))2
= 1

N

V
Pϑ∗

n
( ̂P

Pϑ∗
n

(A))1

(Pn(A))2

= 1

N

1

(Pn(A))2

[∫
A

(
dPn

dP ϑ∗
n

)2

dP ϑ∗
n − (Pn(A))2

]
. (20)

Obviously (by (V1) and (V3)), 2 infx∈A◦ I (x) (i.e., the right-hand side of (19)) is the ex-
ponential decay rate of (Pn(A))2. Inspection of the proof of Theorem 2 reveals that the
left-hand side of (19) is the exponential decay rate of

∫
A
( dPn

dPϑ∗
n

)2dP ϑ∗
n . It is clear from (20)

that, for asymptotic efficiency to hold,
∫

A
( dPn

dPϑ∗
n

)2dP ϑ∗
n must tend to zero at least as fast

as (Pn(A))2. But it cannot decrease faster, since V
Pϑ∗

n
( ̂P

Pϑ∗
n

(A))1 is nonnegative, so that∫
A
( dPn

dQn
)2dQn ≥ (Pn(A))2 for arbitrary Qn. Hence, the exponential decay rates must be ex-

actly equal, as stated by (19). (A closely related argument is given in [5, Chap. 5.2].)
Theorem 2 is widely applicable. It holds in many standard situations, in particular in

many of those that arise in applications.

Proposition 1 Let {Pn} be a family of probability measures that satisfy the conditions of the
Gärtner-Ellis theorem, with (good) rate function I . Let A be a rare event with dominating
point a, let ϑ∗ be the unique solution of ∇�(ϑ) = a, and assume (V2) and (V3). Then {P ϑ∗

n }
is the unique tilted family that is asymptotically efficient for simulating Pn(A).
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Proof The proof is a simple application of Theorem 2. (V1) follows from the Gärtner-Ellis
theorem; we only need to verify condition (19). For the first infimum in (19), one obtains

inf
x∈Rd

[I (x) − 〈ϑ∗, x〉] = −�(ϑ∗) = I (a) − 〈ϑ∗, a〉. (21)

Here, the first step follows from the convex duality lemma (compare [7, Lemma 4.5.8]),
which is applicable since � is lower semicontinuous by (G3), and convex and > −∞ every-
where (this follows from (G1) and (G2) by [8, Lemma V.4]). The second step is due to
part (b) of the dominating point property of a, together with (12).

As to the second infimum in (19), a minimises both I and 〈ϑ∗, .〉 on A (by the dominating
point property). Together with (V3), this gives

inf
x∈A

[I (x) + 〈ϑ∗, x〉] = I (a) + 〈ϑ∗, a〉. (22)

Equations (21) and (22) together give (19) because infx∈A◦ I (x) = infx∈∂A I (x) = I (a). �

Remark 1 Note that an efficiency result closely related to Proposition 1 has previously been
given by Bucklew [5, Theorem 5.2.1], but this is based on the variance rather than the relative
error; and it is only a sufficient condition.

Note also that our assumption of a dominating point greatly simplifies the situation. The-
orem 2 also allows to cope with situations without a dominating point—but this is not needed
below.

Let us now apply this theory to the T-cell model.

4 Rare Event Simulation: The T-cell Model

Recall that simulating the T-cell model means sampling the random variables G(z(f )) of (3)
and estimating the corresponding tail probabilities P(G(z(f )) ≥ gact). Inspection of (3) re-
veals two difficulties:

1. G(z(f )) is a weighted sum of i.i.d. random variables, to which the standard results for
sums of i.i.d. random variables (in particular, Cramér’s theorem) are not applicable. We
therefore need an extension to weighted sums—or, better, to general sums of indepen-
dent, but not identically distributed random variables, which include weighted sums as a
simple special case. This is straightforward and will be the subject of Sect. 4.1. In partic-
ular, it will be seen that, like in the i.i.d. case, every term in the sum must be tilted with
the same parameter, but now this global tilting factor is a function of all the individual
distributions involved.

2. Simulating the random variables Wj = w(Tj ) is straightforward via simple sampling:
draw Exp(1/τ̄ ) distributed random numbers τj (as realisations of Tj ) and apply the trans-
formation (1). However, simulating the corresponding tilted variables is a difficult task,
for two reasons. First of all, there is no indication of how to sample from the tilted distrib-
ution via transformation of one of the elementary distributions (like Uni[0,1] (the uniform
distribution on the unit interval), or Exp(λ)) for which efficient random number gener-
ation is possible. Although such a transformation might exist in principle, there is no
systematic way of finding it. One reason for this is that tilting acts at the level of the
densities, but even the original (untilted) density of W = w(T ) is not available explic-
itly. (With W and T (without indices) we mean any representative of the family.) This is



548 F. Lipsmeier, E. Baake

because its calculation requires the inverse functions and derivatives of the two branches
(increasing and decreasing) of the function w, but these are unavailable analytically.

In the absence of a transformation method, one might consider to determine the tilted
density numerically, integrate it (again numerically) and discretise and tabulate the result-
ing distribution function. However, this is, again, forbidding for our particular function w:
due to the vanishing derivatives at T = 0 and T = 1, the transformation formula for den-
sities yields singularities in the density of W at these values, with a sizeable fraction of
the probability mass concentrated very close to 0 (see Fig. 3). This renders numerical
calculations unreliable. To circumvent these problems, we will, in Sect. 4.2, present a
sampling method for the tilted random variable Wϑ that is based on tilting T rather than
W itself.

4.1 Large Deviations for Independent but not Identically Distributed Random Variables

We consider K independent families of i.i.d. R
d -valued random variables, {Y (1)

 }, . . . , {Y (K)
 }

(i.e., the distribution within any given family {Y (k)
 }, 1 ≤ k ≤ K , is fixed, but the distribu-

tions may vary across families). Assume that �(k)(ϑ) := log E(e〈ϑ,Y
(k)
1 〉), the log moment-

generating function of Y
(k)

1 , is finite for all ϑ ∈ R
d and 1 ≤ k ≤ K (here, E(.) refers to the

probability measure induced by the random variable involved). Let n(1), . . . , n(K) be positive
integers, n := ∑K

k=1 n(k),

Vn :=
n(1)∑
=1

Y
(1)
 + · · · +

n(K)∑
=1

Y
(K)
 , (23)

and Pn be the probability measure induced by Sn = Vn/n. In the limit n → ∞, subject
to n(k)/n → γ (k) for all 1 ≤ k ≤ K , the limiting log-moment generating function of {Sn}
becomes

�(ϑ) = lim
n→∞

1

n
log E(e〈ϑ,Vn〉) = lim

n→∞

K∑
k=1

n(k)

n
�(k)(ϑ) =

K∑
k=1

γ (k)�(k)(ϑ), (24)

where the second step is due to independence. Since, by assumption, �(k)(ϑ) < ∞ for all
ϑ ∈ R

d and 1 ≤ k ≤ K , the �(k) are differentiable on all of R
d (see [7, Lemma 2.2.31]); in

fact, they are even C∞(Rd) [7, Exercise 2.2.24]. Thus, � is C∞(Rd) as well.
By (24), we have (G1). Again due to �(k)(ϑ) < ∞, (G2) and (G5) are automatically

satisfied. Furthermore, the differentiability of � entails (G3) and (G4). We have therefore
shown

Lemma 1 Under the assumptions of this paragraph, {Pn} satisfies the Gärtner-Ellis theo-
rem, with rate function I given by (10).

Such {Pn} are therefore candidates for efficient simulation according to Proposition 1.
The tilting factor ϑ∗ may not be accessible analytically, but can be evaluated numerically
from (11). Due to independence, tilting of Sn with nϑ∗ (that is, tilting of Vn with ϑ∗) is
equivalent to tilting each Y

(k)
 with ϑ∗.
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4.2 Tilting of Transformed Random Variables

Unlike the Wj , the Exp(1/τ̄ )-distributed random variables Tj are tilted easily (tilting with ϑ

simply gives Exp(−ϑ + 1/τ̄ )). One is therefore tempted to tilt the Tj rather than the Wj , or,
in other words, to interchange the order of tilting and transformation. The following theorem
states the key idea.

Theorem 3 Let X be an R
d -valued random variable with probability measure μ, and let

Y := h ◦ X (or Y = h(X) by slight abuse of notation), where h : R
d → R

d is μ-measurable.
Then Y has probability measure ν = μ ◦ h−1, where h−1(y) denotes the preimage of y. As-
sume now that Eμ(e〈ϑ,h(X)〉) exists, let X̃ϑ be an R

d -valued random variable with probability
measure μ̃ϑ related to μ via

dμ̃ϑ

dμ
(x) = e〈ϑ,h(x)〉

Eμ(e〈ϑ,h(X)〉)
(25)

(so that μ̃ϑ � μ), and let Ỹ ϑ = h(X̃ϑ). Then, the measures ν̃ϑ (of Ỹ ϑ ) and νϑ (for the tilted
version of ν, belonging to Y ϑ ) are equal, where νϑ � ν with Radon-Nikodym density

dνϑ

dν
(y) = e〈ϑ,y〉

Eν(e〈ϑ,Y 〉)
. (26)

Proof Note first that e〈ϑ,y〉 is clearly μ-measurable, and

Eν(e
〈ϑ,Y 〉) =

∫
Rd

e〈ϑ,y〉dν(y) =
∫

Rd

e〈ϑ,h(x)〉dμ(x) = Eμ(e〈ϑ,h(X)〉), (27)

which exists by assumption, so νϑ is well-defined. We now have to show that ν̃ϑ (B) =
νϑ(B) for arbitrary Borel sets B . Observing that ν̃ϑ = μ̃ϑ ◦ h−1 and employing the formu-
las for transformation of measures [3, (13.7)] and change of variable [3, Theorem 16.13],
together with (25), one indeed obtains

ν̃ϑ (B) = μ̃ϑ
(
h−1(B)

) =
∫

h−1(B)

dμ̃ϑ

dμ
(x)dμ(x) = 1

Eμ(e〈ϑ,h(X)〉)

∫
h−1(B)

e〈ϑ,h(x)〉dμ(x)

= 1

Eν(e〈ϑ,Y 〉)

∫
B

e〈ϑ,y〉dν(y) =
∫

B

dνϑ

dν
(y)dν(y) = νϑ(B), (28)

which proves the claim. �

In words, Theorem 3 is nothing but the simple observation that, to obtain the tilted version
of Y = h(X), one can reweight the measure μ of X with the factors e〈ϑ,h(x)〉, rather than
reweighting the measure ν of Y with e〈ϑ,y〉. It should be clear, however, that the measure μ̃ϑ

differs from the usual tilted version of μ, which would involve tilting factors e〈ϑ,x〉 rather
than e〈ϑ,h(x)〉; for this reason, we use the notation μ̃ϑ rather than μϑ . Such kind of tilting
is common in large deviation theory (see, e.g., [7, Chap. 2.1.2]). Nevertheless, the simple
observation above is the key to simulation if μ (and μ̃ϑ ) are readily accessible at least
numerically, but ν (and νϑ ) are not.

This is precisely our situation, with T̃ ϑ , αWϑ and αw (α ∈ {qz(c), qz(v), z(f )}), respec-
tively, taking the roles of X̃ϑ , Y ϑ and h (we will use f , f̃ ϑ , g and gϑ for the corresponding
densities of T , T̃ ϑ , αW , and (αW)ϑ ). Still, reweighting of the exponential density of T with
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eϑαw(τ) does not yield an explicit closed-form density, and no direct simulation method is
available for the corresponding random variables. However, the reweighted densities are eas-
ily accessible numerically, in contrast to those of W and its tilted variant, Wϑ . The problem
may thus be solved by calculating and integrating f̃ ϑ numerically and discretising and tab-
ulating the resulting distribution function F̃ ϑ . Samples of T̃ ϑ may then be drawn according
to this table (i.e., by formally looking up the solution of F̃ (T̃ ϑ) = U for U ∼ Uni[0,1]), and
αWϑ = αw(T̃ ϑ) is then readily evaluated. The only difficulty left is the time required for
searching the table. But this is a practical matter and will be dealt with in the next paragraph.

4.3 The Algorithm

Taking together our theoretical results, we can now detail the specific importance sampling
algorithm for the simulation of the T-cell model of Sect. 2. If not stated otherwise, we will
refer to the basic model (3). Recall that it describes the stimulation rate G(z(f )) and we wish
to evaluate the probability P(G(z(f )) ≥ gact).

To apply LD sampling, let us embed the model into a sequence of models with increasing
total number n = n(c) +n(v) +n(f ) of antigen types, where n(c), n(v), and n(f ) are the numbers
of constitutive, variable and foreign antigen types. (This is an artificial sequence of models
required to formulate the limiting process involved in the theory; in contrast to the original
model, there can now be multiple foreign antigen types.) Let

Gn(z
(f )) =

⎛
⎝ n(c)∑

j=1

qnz
(c)Wj

⎞
⎠ +

⎛
⎝n(c)+n(v)∑

j=n(c)+1

qnz
(v)Wj

⎞
⎠ +

⎛
⎝n(c)+n(v)+n(f )∑

j=n(c)+n(v)+1

z(f )Wn(c)+n(v)+j

⎞
⎠ ,

(29)
where

qn = n(c)z(c) + n(v)z(v) − n(f )z(f )

n(c)z(c) + n(v)z(v)
(30)

(where z(c), z(v), and z(f ) are independent of n). Clearly, Gn(z
(f )) coincides with G(z(f ))

of (3) if n(c) = m(c), n(v) = m(v), and n(f ) = m(f ), where m(f ) = 0 or m(f ) = 1 depend-
ing on whether z(f ) = 0 or z(f ) > 0; then, n = m = m(c) + m(v) + m(f ). We have to
consider P(Gn(z

(f ))/n > gact/m) (this reflects the fact that gact must scale with system
size). The sequences {Gn(z

(f ))} and {Gn(z
(f ))}/n take the roles of {Vn} and {Sn}, re-

spectively, in Sects. 3.1 and 4.1, with Pn the law of Gn(z
(f ))/n; and we consider A =

[gact/m,∞) with E(Gm(z(f ))/m) < gact/m < Mw(1)/m (the latter is the maximum value
of Gm(z(f ))/m since w(τ) has its maximum at τ = 1). The limit n → ∞ is then taken so that
limn→∞ n(c)/n = m(c)/m, limn→∞ n(v)/n = m(v)/m, as well as limn→∞ n(f )/n = m(f )/m,
that is, the relative amounts of constitutive, variable, and foreign antigens approach those
fixed in the original model, (3). (Note that, in [36], a different limit was employed, namely,
n → ∞ with limn→∞ n(c)/n(v) = C1 ∈ (0,∞) and limn→∞ n(f )/n = 0; this is appropriate
for exact asymptotics, but not for simulation, because the asymptotic tilting factor to be
used in the latter then does not feel the foreign antigens.)

Lemma 2 Let f be the density of Exp(1/τ) (i.e., f (τ) = e−τ/τ /τ ), and

ψ(t) := E(etW ) =
∫ ∞

0
exp

(
tw(τ)

)
f (τ)dτ = 1

τ̄

∫ ∞

0
exp

(
t
exp(−1/τ)

τ
− τ

τ̄

)
dτ (31)
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be the moment-generating function of W1. Under the assumptions of Sect. 4.3, the unique
solution ϑ∗ of

gact

m
= m(c)

m
qz(c)

[
d

dt
logψ(t)

]∣∣∣∣
t=qz(c)ϑ

+ m(v)

m
qz(v)

[
d

dt
logψ(t)

]∣∣∣∣
t=qz(v)ϑ

+ 1

m
z(f )

[
d

dt
logψ(t)

]∣∣∣∣
t=z(f )ϑ

(32)

is the unique asymptotically efficient tilting parameter for LD simulation of Pn(A).

Proof Clearly, Pn satisfies the assumptions of Sect. 4.1. Note, in particular, that ψ(t) < ∞
for all t ∈ R since W is bounded above and below, and so

�(ϑ) = lim
n→∞ log E(eϑGn(z(f ))/n)

= m(c)

m
logψ(qz(c)ϑ) + m(v)

m
logψ(qz(v)ϑ) + 1

m
logψ(z(f )ϑ) < ∞ (33)

for all ϑ ; hence, the Gärtner-Ellis theorem holds by Lemma 1. To verify the remaining as-
sumptions of Proposition 1, recall from Sect. 4.1 that �(ϑ) is differentiable (with continuous
derivative) on all of R. The bounds on gact/m lead to

�′(0) = E(G(z(f )))

m
<

gact

m
<

Mw(1)

m
= lim

ϑ→∞�′(ϑ). (34)

� is strictly convex (since (d2/dt2) logψ(t) is the variance of Wt , the tilted version of W

(cf. [2, Proposition XII.1.1]), which is positive since W and hence Wt is nondegenerate).
Equation (34) thus entails that �′(ϑ) = gact/m has a unique solution ϑ∗, which is positive
(and clearly satisfies (V2)). As a consequence, gact/m is a dominating point of A, which is
a rare event since 0 < I (gact/m) < ∞ (by �(0) = 0 together with (34) and (12); cf. Fig. 4,
left). Finally, A is a continuity set of both I and I + 〈ϑ∗, .〉 simply because I and 〈ϑ∗, .〉 are
continuous at gact/m, and A = A◦. Realising that the right-hand side of (32) equals �′(ϑ)

(see also (20) in [36]), one obtains the claim from Proposition 1. �

The solution of (32) is readily calculated numerically. The function �, and the resulting
rate function I , are shown in Fig. 4.

As described in Sect. 4.2, we now tilt the density f of the Tj with ϑ∗ according to (25).
This yields three different densities f̃ ϑ∗

α , depending on the weighting factors α ∈ {qz(c),
qz(v), z(f )}, namely

f̃ ϑ∗
α (τ ) = exp(αϑ∗w(τ))f (τ )

ψ(αϑ∗)
=

1
τ̄

exp(αϑ∗ exp(−1/τ)

τ
− τ

τ̄
)

ψ(αϑ∗)
. (35)

As discussed in Sect. 4.2, this is not the density of any known standard distribution (let
alone an exponential one), and simulating from it requires numerical integration (which is
well-behaved since the f̃ ϑ∗

α are numerically well-behaved), and discretisation and tabula-
tion of the resulting distribution functions F̃ ϑ∗

α , followed by looking up the solution τ̃ ϑ∗
of

F̃ ϑ∗
α (T̃ ϑ∗

) = U for U ∼ Uni[0,1], to finally yield αWϑ∗
via αWϑ∗ = αw(T̃ ϑ∗

).
Searching the table would be the speed- (or precision-) limiting step, requiring O(logD)

operations if D is the number of discretisation steps. This can be remedied by applying the
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Fig. 4 The cumulant-generating function � (left) and the rate function I (right) for the T-cell model (3). The
slope of the straight line in the left panel is a = gact/m, where gact = 800 and m = 1551. At ϑ∗, aϑ − �(ϑ)

assumes its maximum, I (a) (cf. (10)–(12))

so-called alias method to quickly generate random variables according to the discretised
probability distribution. For a description of the method, we refer the reader to [18, pp. 25–
27], [15], or [23, p. 248]. Let us just summarise here that, after a preprocessing step, which
is done once for a given distribution, the method only requires one Uni[0,1] random variable
together with one multiplication, one cutoff and one subtraction (or two Uni[0,1] random
variables together with one multiplication, one cutoff and one comparison, depending on
the implementation) to generate one realisation of T̃ ϑ∗

, regardless of D (in particular, it
does without searching altogether).

We now have everything at hand to formulate the algorithm to simulate (realisations
of) G(z(f )) of (3). (For notational convenience, we will not distinguish between random
variables and their realisations here).

Algorithm 1

compute ϑ∗ by solving (32) numerically
calculate the tilted densities f̃ ϑ∗

α , α ∈ {qz(c), qz(v), z(f )}, via (35)
for i = 1 till sample size N do

for every summand j of (3) generate a sample (T̃ ϑ∗
j )(i) according to its density f̃ ϑ∗

α(j)

with the help of the alias method (here, the upper index (i) is added to reflect sample i,
and α(j) is the weighting factor of the sum to which j belongs)
calculate

(
G(z(f ))

)(i) =
(

m(c)∑
j=1

qz(c)w
(
(T̃ ϑ∗

j )(i)
)) +

(
m(c)+m(v)∑
j=m(c)+1

qz(v)w
(
(T̃ ϑ∗

j )(i)
))

+ z(f )w
(
(T̃ ϑ∗

m(c)+m(v)+1)
(i)

)
calculate the indicator function times the reweighting factor (i.e., the i-th summand
in (15))
if (G(z(f )))(i) ≥ gact then

R(i) =
m∏

j=1

fα(j)((T̃ ϑ∗
j )(i))

f̃ ϑ∗
α(j)((T̃ ϑ∗

j )(i))
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else
R(i) = 0

end if
end for
calculate ( ̂P ϑ∗

Pm
(A))N =

∑N
i=1 R(i)

N
, as estimate of P(G(z(f )) > gact).

4.4 Extension to Variable Copy Numbers

Let us now consider the extended model (4), in which the copy numbers are themselves
random variables. This is also covered by the large deviation theory presented above; in
particular, Lemma 1 again applies if the Y

(k)
 in (23) are identified with Z

(c)
j Wj or Z

(v)
j Wj ,

respectively. The global tilting factor ϑ∗ is, in the usual way, calculated as the solution
of �′(ϑ) = gact/m, where �(ϑ) is as in (33) with ψ(qz(k)ϑ) = E(eqz(k)ϑW ) replaced by
E(ψ(qZ(k)ϑ)) = E(eqZ(k)ϑW ), k ∈ {c, v}; see (20) in [36].

However, the object of tilting now is the joint distribution of W and Z(c) (or Z(v), respec-
tively), that is, dF(τ)dH(k)(z) receives the reweighting factor exp(qϑzw(τ)), where F and
H(k) denote the measures of T and Z(k), k ∈ {c, v}, respectively. This introduces dependen-
cies between copy numbers and stimulation rates. The resulting bivariate simulation task is
costly and may offset some of the efficiency gain obtained by tilting.

If, however, the Z(k) are closely peaked around their means (as is the case for our
choice of parameters), the following hybrid procedure turns out to be both practical and
fast: Draw the Z(k) from their original (untilted, binomial) distributions; and simulate a
tilted version of qW , denoted by (qW)ϑ∗

, by reweighting the original density of qW with
exp(qϑ∗

E(Z(k))W), irrespective of the actual value of Z. Clearly, this method is not asymp-
totically efficient, but it is a valid importance sampling method that turns out to compare
well with the ideal procedure used for the fixed copy numbers (see Sect. 5.1.3).

5 Results

Let us now present the results of our simulations in two steps. We first investigate the perfor-
mance of the method, and then use it to gain more insight into the underlying phenomenon
of statistical recognition.

5.1 Performance of the Simulation Method

We will examine the performance of the importance-sampling method in three respects:
we will compare it to simple sampling (the previously-used simulation method) and to the
results of exact asymptotics (the previously-used analytic method); finally, we will quantify
the efficiency in terms of the relative error (and thus return to the theory of Sect. 3.2). In
any case, we will consider P(G(z(f )) ≥ gact) as a function of gact (and for various values of
the parameter z(f )). Of course, this probability is just one minus the distribution function
of G(z(f )); in immunobiology, the corresponding graph is known as the activation curve.

Evaluating this graph by LD simulation requires, for each value of gact to be considered,
a fresh sample, simulated with its individual tilting factor ϑ∗ (recall that this depends on gact

via (32)). At first sight, this looks like an enormous disadvantage relative to simple sampling,
where no threshold needs to be specified in advance; rather, the outcomes of the simulation
directly yield an estimate over the entire range of the activation curve. However, it will turn
out that this disadvantage is offset many times by the specific efficiency of hitting the rare
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events in LD sampling. (There is room for improvement: the samples that do not hit a given
rare event could be used to improve the estimates of the more likely events.)

5.1.1 Comparison with Simple Sampling

Clearly, both the simple-sampling and the importance-sampling estimates are unbiased and
converge to the true values as N → ∞. It is therefore no surprise that they yield practically
identical results wherever they can be compared—and this yields a first quick consistency
check for our method.

This is demonstrated in Fig. 5, which shows simple sampling (SS) and importance sam-
pling (IS) activation curves, each for z(f ) = 1000 and z(f ) = 2000. For SS, N = 1.3 × 108

samples, (G(z(f )))(i),1 ≤ i ≤ N , were generated altogether for every graph, whereas for IS,
N = 10000 samples were generated for every threshold value considered (from gact = 100
to gact = 1000 in steps of 50), i.e. 1.9 × 105 samples altogether. Beyond gact = 450 and
gact = 800 (for z(f ) = 1000 and z(f ) = 2000, respectively), no estimates could be obtained
via SS due to the low probabilities involved, whereas with IS, it is easy to get beyond

Fig. 5 Estimates of the activation curve, P(G(z(f )) ≥ gact), in the basic model (3) for z(f ) = 1000 and
z(f ) = 2000, as well as for the self background (z(f ) = 0), on logarithmic scale. The probabilities were
estimated independently with simple sampling (SS), importance sampling (IS), and exact asymptotics based
on large deviation theory (LDT) as used in [36]. For IS, 19 values of gact were considered (from 100 to 1000
in steps of 50), and N = 10000 samples were generated for each value (i.e., 1.9 × 105 samples altogether),
whereas for the SS simulation, N = 1.3 × 108 samples were used over the entire range. The SS curves end
at gact = 400 and gact = 800, respectively, because larger values were not hit in the given sample. The IS
and SS graphs agree perfectly until the SS simulation lacks precision. For larger threshold values, we see a
perfect agreement of the IS and LDT graphs. Note the general feature that, for threshold values that are not
too small, the activation probability in the presence of foreign antigens is several orders of magnitude larger
than the self background, i.e. (6) is satisfied
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gact = 900 in either case, although the probabilities can get down to 10−20 (note, however,
that this far end of the distribution is no longer biologically relevant). In terms of runtime,
determining an activation curve (over its entire range) by SS took 48 hours of CPU time
(Intel Pentium M 1.4 GHz 512 MB RAM), whereas IS required only about 2 minutes (in
the threshold regime where the methods are comparable), that is, a speedup by a factor of
nearly 1500 is achieved.

We also applied our method to the extended model (4) with binomially distributed copy
numbers. Figure 6 shows the simulation results for two values of z(f ), each for SS and IS.
Again, the curves agree, as they must. As to runtime, it took about 130 hours to generate the
2 × 107 samples for SS, whereas for IS it took 10 min. to generate the 9.5 × 104 samples.

5.1.2 Comparison with Exact Asymptotics

A pillar of the previous analysis of Zint et al. [36] (and its precursor BRB [34]) has been
so-called exact asymptotics. This is a refinement of large deviation theory which yields
estimates for the probabilities Pn(A) themselves, rather than just their exponential decay
rates obtained via the LDP in Definition 1. With standard large deviation theory (and our
simulation method), it shares the tilting parameter which is calculated according to (32); for
more details, we refer to [36]. A comparison of IS simulation with exact asymptotics is also
included in Fig. 5. For small values of gact, exact asymptotics is slightly imprecise. This is
due to the asymptotic nature (n → ∞) of the method, which yields more precise results in

Fig. 6 Simulation of P(G(z(f )) ≥ gact) in the extended model (4), for z(f ) = 1500 and z(f ) = 2500. The
probabilities were estimated independently with simple sampling, and with importance sampling at 19 differ-
ent threshold values (from 100 to 1000 in steps of 50). For IS, 9.5 × 104 samples were generated (5000 per
threshold); for SS, 2 × 107 samples were used. No estimates are obtained with SS at thresholds beyond 600
or 920, respectively, in analogy with the situation in Fig. 5
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the very tail of the distribution, where the deviations are truly large. Note that, although our
tilting factors agree with those in exact asymptotics, rare event simulation does not suffer
from this accuracy problem since, due to the reweighting, it is always a valid importance
sampling scheme that yields unbiased estimates for every finite n; the finite-size effects will
only manifest themselves as a certain loss of efficiency, as will be seen below.

5.1.3 Asymptotic Efficiency and Relative Error

In order to investigate the relative error of ( ̂P
Pϑ∗

n
(A))N , we first note that the variance of the
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where we have used (15) for N = 1. V(( ̂P
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where the (tϑ
∗

n )(i) are now considered as realisations of (T ϑ∗
n )(1). We can thus estimate the

squared relative error as
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For simple sampling, one proceeds in the obvious analogous way (without tilting and
reweighting).

In line with the limit discussed in Sect. 4.3, we now consider Gn(z
(f )) for system sizes

n = ni , where ni = n
(c)
i + n

(v)
i + n

(f )

i , 0 ≤ i ≤ 10, and we choose n
(α)
i = im(α), α ∈ {c, v, f },

for 1 ≤ i ≤ 10, as well as n
(c)

0 = m(c)/2, n
(v)

0 = m(v)/2, and n
(f )

0 = m(f ) (i.e., we simply
‘multiply’ the system, except for i = 0, which corresponds to ‘half’ a system except for the
foreign peptide, which cannot be split into two). We then simulate P(Gni

(z(f )) ≥ gactni/m)

for two values of z(f ) and a fixed value of gact with our importance sampling method, as
shown in Fig. 7.

Obviously, the (estimated) probabilities decay to zero at an exponential rate with increas-
ing n, as they must by their LDP. In contrast, the (estimated) squared RE only increases
linearly—this even goes beyond the prediction of the theory (asymptotic efficiency only
guarantees a subexponential increase).

So far, we have considered the n-dependence of the method for a fixed value of gact, in
the light of the available asymptotic theory. For the practical simulation of the given T-cell
problem, we now take the given system size n = m and numerically investigate the relative
error as a function of gact. Here, the exponential decay of P(G(z(f )) ≥ gact) as a function
of gact is decisive, which we have already observed in Fig. 5, and which goes together with
the at-least-linear increase of I with gact (recall that I is convex, and see Fig. 4). Figure 8
shows the relative error of both SS and IS. It does not come as a surprise that, again, IS
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Fig. 7 Importance sampling simulations for P(Gn(z(f )) ≥ gactn/m) for n = ni , 0 ≤ i ≤ 10, for gact = 400
and two values of z(f ). Left: estimate of the probability (note that the vertical axis is on logarithmic scale).
Right: estimated squared RE

Fig. 8 Estimated squared RE for simple sampling (N = 10000 times the number of steps contained in the
considered interval (left), N = 1.3 × 108 (right)), and importance sampling (N = 10000 per threshold value
in either panel) simulations of P(G(z(f )) > gact) of the basic model, (3). Note that the vertical axis is on
logarithmic scale

does extremely well and beats the exponential decay of the probabilities: whereas, on the
log scale of the vertical axis, the squared RE of SS grows roughly linearly, it remains more
or less constant for IS. (The very low squared RE of the simple sampling graphs for low
thresholds in the right panel is due to the fact that the probability to reach this threshold is
quite high and the huge sample of N = 1.3 × 108 contributes to estimating it, that is, the
sample sizes are not comparable. A simple sampling simulation run with the total sample
size of a corresponding IS simulation (i.e., N = 10000 times the number of steps contained
in the interval considered) results in higher relative errors than for importance sampling even
for the low threshold values (left panel). We would like to note, however, that the runtime of
simple sampling for these small sample sizes is shorter than the runtime for IS, even if one
does not count the overhead required to get the tilting parameters for importance sampling.)

Figure 9 sheds more light on the behaviour of the relative error of the IS simulation. It
shows the squared RE for 6 distinct z(f )-values and reveals the finite-size effects. The wave-
like behaviour for larger z(f ) is due to the fact that, for very low threshold values, there is
no real need for tilting, because the original distribution Pn is already close to optimal and
the tilting factor is very small. For increasing thresholds, substantial tilting is required, but
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Fig. 9 Estimated squared RE of our IS estimate, for various frequencies z(f ) of the foreign antigen. Details
are as in Fig. 8, but now the vertical axis is on linear scale

there are still visible deviations from the n → ∞ limit (as already discussed in the context
of Fig. 5), so the tilted distributions are not optimal. This produces the hump in the squared
RE curves, which is more pronounced for larger z(f ) values because, for the case n = m

considered here, the foreign antigens come as a single term that may stand out. For large gact,
finally, one gets close enough to the limit, and the expected sub-exponential increase sets in
(in our case, it is, in fact, roughly linear). Nevertheless, it should be clear that, in spite of the
slight non-optimality at small threshold values, our tilted distributions still yield a far lower
squared RE than does simple sampling. A very similar picture emerges for the extended
model; surprisingly, the relative error is no larger than in the basic model, although the
ad hoc simulation method used here is not asymptotically efficient (see Sect. 4.4; data not
shown).

5.2 Analysis of the T-cell Model

In this section, we use our simulation method to obtain more detailed insight into the phe-
nomenon of statistical recognition in the T-cell model. As discussed before, the task is to
discriminate one foreign antigen type against a noisy background of a large number of self
antigens. We already know from Fig. 5 that, for threshold values that are not too small,
the activation probability in the presence of foreign antigens is several orders of magnitude
larger than the activation probability of the self-background, i.e. (6) is satisfied. As dis-
cussed in [36], this distinction relies on z(f ) > z(c), z(v)—what happens is that larger copy
numbers of the foreign antigen thicken the tail of the distribution of G(z(f )) (without chang-
ing its mean), so that the threshold is more easily surpassed. The self-nonself distinction
may, according to this model, be roughly described as follows. For a given antigen (foreign
or self), finding a highly-stimulating T-cell receptor is a rare event; but if it occurs to a for-
eign antigen, it occurs many times simultaneously since there are numerous copies, which
all contribute the same large signal, since all receptors of the T-cell involved are identical;
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the resulting stimulation rate is thus high. In contrast, if it is a self antigen that finds a highly-
stimulating receptor, the effect is less pronounced due to the smaller copy numbers. In this
sense, the toy model explains the distinction solely on the basis of copy numbers; but see
the Discussion for more sophisticated effects that alleviate this requirement.

Following these intuitive arguments, we now aim at a more detailed picture of how the
self background looks, and how the foreign type stands out against it. To investigate this, it
is useful to consider the histograms of the total constitutive, variable, and foreign stimula-
tion rates, i.e., the contributions of the constitutive sum, the variable sum, and the individual
foreign term in the sum (3), either for all samples or for the subset of samples for which
G(zf ) ≥ gact, for various gact. Since this requires a higher resolution (and thus larger sample
size) than the calculation of the activation probabilities alone, such analysis would be practi-
cally impossible with simple sampling. With IS, we again generated 10000 samples per gact

value, from which between 30 and 70 percent turned out to reach the threshold.
Figure 10 shows the resulting histograms when all samples are included, and Figs. 11

and 12 show the histograms for the subset of samples that have surpassed four representative
threshold values, without and with foreign antigen. Tables 1 and 2 summarise these results
in terms of means and standard deviations. Finally, Fig. 13 shows the corresponding two-
dimensional statistics for all pairs of variable, constitutive, and foreign stimulation rates,
again for various threshold values. (Figs. 11–13 are based on the outcome of importance
sampling without reweighting; normalising by the number of “successful” samples would
result in an estimate of the conditional distribution, because the reweighting factors cancel
out.)

Let us start with the situation without foreign antigens, as displayed in Figs. 10 (left)
and 11 as well as Table 1. This already illustrates the fundamental difference between vari-
able and constitutive antigens. Judging from the large number (m(v) = 1500) of individual
terms in the sum at low copy number (z(v) = 50), the variable stimulation rate is expected to
be approximately normally distributed and fairly closely peaked around its mean—at least as
long as no restriction on G(z(f )) is involved—and, as the Figure shows, this feature persists
when G(z(f )) > gact, practically independently of the threshold involved. So, the variable
antigens form a kind of background that poses no difficulty to foreign-self distinction: it is
not very noisy, and it does not change with the threshold.

Fig. 10 Histograms of the total stimulation rates of variable, constitutive, and foreign antigens, for z(f ) = 0
(left) and z(f ) = 1000 (right), in the basic model (3), when all samples are included. Sample size is 10000,
and the vertical axis holds the number of samples whose total constitutive (variable, foreign) stimulation rates
fall into given intervals. Note that the scaling of the vertical axis varies across diagrams
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Fig. 11 Histograms of the total stimulation rates of variable and constitutive antigens, for z(f ) = 0, in the
basic model (3), for samples that reach a given threshold value (gact = 100 (upper left), gact = 250 (up-
per right), gact = 500 (lower left), gact = 1000 (lower right)). Sample size is 10000, and the vertical axis
holds the number of samples that reach gact and whose total constitutive (variable, foreign) stimulation rates
falls into given intervals. Note that the scaling of both axes varies across diagrams

In contrast, the distribution of the constitutive activation rates is wider; this is due to
the large copy numbers (z(c) = 500), the effect of which is not compensated by the smaller
number of terms, m(c) = 50. Furthermore, the normal approximation is not expected to be
particularly good for the constitutive antigens—given the extreme asymmetry of the W -
distribution (see Fig. 3), the central limit theorem will not average out the deviations at only
m(c) = 50. In particular, the distribution remains asymmetric. With increasing threshold, this
distribution moves to the right. The reason for this is that, in order to reach an increasing gact,
the tail events of the constitutive or the variable sum or both must be used, but it is “easier”
(that is, more probable) to use the constitutive one because it contains more atypical events.
In the language of large deviation theory, this is an example of the general principle that
“large deviations are always done in the least unlikely of all the unlikely ways” [8, Chap. I].
In the language of biology, the constitutive antigens are the problem of foreign-self distinc-
tion: due to their high copy numbers and incomplete averaging, fluctuations persist that oc-
casionally induce an immune response even in the absence of foreign antigens. This occurs
if a T-cell receptor happens to fit particularly well to one, or a number of, constitutive antigen
types on an APC; due to their large copy numbers, these few highly-stimulating types are
then sufficient to surpass the threshold (in contrast, several highly-stimulating types would
be required for the variable antigens to elicit a reaction, which is too improbable).

Let us now turn to the picture with foreign antigen present (Figs. 10 (right), 12, 13, and
Table 2). One salient feature here is that the variable stimulation rate behaves exactly as in
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Fig. 12 Histograms of the total constitutive, variable and foreign stimulation rates for z(f ) = 1000 in the
basic model (3). Sample size is 10000, and the vertical axis holds the number of samples that reach the
threshold gact and whose total constitutive (variable, foreign) stimulation rate falls into a given interval, for
gact = 100 (upper left), gact = 250 (upper right), gact = 500 (lower left), gact = 1000 (lower right). The
maximal stimulation rate for the foreign antigens is z(f )w(1) = 367.9. Note that the scaling of both axes
varies across diagrams

Table 1 Sample means (top)
and sample standard deviations
(bottom) of the histograms in
Fig. 10 (left) and Fig. 11 (i.e., the
self-only case)

Rate \ gact 0 100 250 500 1000

Variable 66.6 74.9 77.1 78.8 80.0

Constitutive 22.2 59.2 277.7 590.6 1160.3

Rate \ gact 0 100 250 500 1000

Variable 12.7 13.9 14.5 14.9 15.1

Constitutive 23.1 35.6 88.8 134.9 191.3

the self-only case: closely peaked around a small mean, unchanged when {G(z(f )) > gact}
is imposed. The picture is thus dominated by the interplay of constitutive and foreign types.
In line with Fig. 5, the situation is similar in the case without restriction on G(z(f )) (Fig. 10,
right) and the case when G(z(f )) ≥ 100 (Fig. 12, upper left). In particular, the foreign stimu-
lation rate is closely peaked at 0; only the constitutive background has moved slightly to the
right, exactly as in the self-only case. For gact = 250 (Fig. 12, upper right), where, according
to Fig. 5, foreign-self distinction sets in, the foreign stimulation rate becomes prominent: the
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Table 2 Sample means (top)
and sample standard deviations
(bottom) of the histograms in
Fig. 10 (right) and Fig. 12 (i.e.,
the case with foreign antigens)

Rate \ gact 0 100 250 500 1000

Variable 65.9 74.1 74.2 76.2 78.4

Constitutive 21.8 55.9 129.5 270.4 821.1

Foreign 0.9 4.0 184.8 279.6 302.2

Rate \ gact 0 100 250 500 1000

Variable 12.7 14.1 13.9 14.2 14.7

Constitutive 22.4 42.0 90.4 109.1 163.7

Foreign 6.7 18.5 112.2 54.5 39.2

right branch of the W -distribution now becomes populated, and the associated stimulation
rates are large due to the large copy numbers z(f ) involved.

Nevertheless, for gact = 250, the foreign stimulation rate is close to 0 in a sizable fraction
of the cases in which an immune reaction occurs—here, the reaction is brought about by
the constitutive background, which moves to the right just as in the self-only case (but less
pronounced). Figure 13 shows that the constitutive and foreign stimulation rates are, indeed,
negatively correlated: as is to be expected, low foreign rates are compensated by high consti-
tutive rates and vice versa (in contrast, the variable background hardly correlates with either
the constitutive or the foreign stimulation rate). As in the self-only case, therefore, the level
of unwanted activation (“self-only” or “mainly self, without appreciable foreign activation”)
is set by the tail behaviour of the constitutive background. However, if gact is increased fur-
ther (Fig. 12, lower left), every T cell beyond the threshold displays high stimuli for the
foreign antigen, their distribution shifting even further to the right and concentrating near
the maximal stimulation rate given by the maximum of the function w of equation (1), more
precisely, by z(f )w(1). This maximum can, of course, not change by imposing restrictions
on G(z(f )); thus, any further increase of gact (Fig. 12, lower right) must then be matched by
the by now familiar shift of the constitutive background. (This last panel is, however, less
biologically realistic since the probabilities involved are too small to be relevant—after all,
with about 107 different T-cell types, threshold values that yield activation probabilities far
below 10−7 even in the presence of foreign antigens offer no immune protection.)

A further illustration of the onset of self-nonself distinction is presented in Fig. 14. Here
we consider

P
(
G(z(f )) − z(f )Wn(c)+n(v)+1 > gact | G(z(f )) > gact

)

= P(G(z(f )) − z(f )Wn(c)+n(v)+1 > gact)

P(G(z(f )) > gact)
, (39)

i.e., the probability that, in a T-cell that is activated in the presence of foreign antigen, the self
component alone would have been sufficient for the activation. From z(f ) = 1000 onwards,
this probability decreases to 0 quickly with increasing gact. Put differently, in large parameter
regions, the foreign antigens do indeed make the difference, which is the decisive feature of
self-nonself distinction.
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Fig. 13 Pairwise joint frequencies of the total constitutive, variable, and foreign stimulation rates, for those
samples with G(z(f )) > gact in the basic model (3) (with z(f ) = 1000). Grey scales correspond to number of
samples falling into 2D-intervals defined by total stimulation rates of pairs of antigen types. Rows (from
top to bottom): gact = 100,250,350,500,750,1000; columns (from left to right): constitutive (horizon-
tal)–variable (vertical); foreign (horizontal)–variable (vertical); foreign (horizontal)–constitutive (vertical).
Lighter shading corresponds to higher frequencies
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Fig. 14 Fraction of samples whose self-component alone is above threshold, among those that reach the
threshold in the presence of z(f ) foreign molecules, for various z(f ) (i.e., IS simulation of the probability
in (39)). Sample size is 10000 for each gact value considered

6 Conclusion and Outlook

We have established here a method of LD sampling that allows the convenient simulation
of the rare events relevant to statistical recognition in the immune system. Thus a more
thorough investigation of these events could be carried out.

But this is only a first step, and the goal for future work is to use this or related methods to
investigate biologically realistic models. Indeed, the toy model considered here, which relies
solely on distinction by copy numbers, does serve the aim to illustrate that distinction against
a noisy background is, at all, possible, even without an intrinsic difference between self and
nonself, and how this is related to the rare events in the tail of the background distribution.
However, biologically realistic models have to take into account tolerisation mechanisms
that make the T-cells less responsive to self antigens. One important such mechanism is so-
called negative selection. Negative selection occurs during the maturation phase of young
T-cells in the thymus, before they are released into the body. In a process similar to the one
described by the toy model, they are confronted with APCs that present mixtures of various
self antigens, and those T-cells whose activation rate surpasses a thymic activation thresh-
old gthy < gact are eliminated. When they are later, after leaving the thymus, confronted
with mixtures of self and foreign antigens, the stimulation rates emerging from self and
foreign are no longer i.i.d. (the self ones are biased towards smaller values and possibly
negatively correlated). In fact, a simple model for negative selection was already described
in BRB [34], and shown to drastically reduce the self background, so that foreign antigens
do no longer require elevated copy numbers to be detected. More sophisticated models of
negative selection have been formulated e.g. in [31]. However, their simulation still awaits
the development of adequate methods. This is the purpose of ongoing work.
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